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Welfare Maximization in Multidimensional Settings

Multidimensional or multi-parameter environments are ones where we need to elicit more than one
piece of information per bidder. The most common settings include m heterogenous (different)
items and

e n unit-demand buyers; buyer ¢ has value v;; for item j but only wants at most 1 item. (You
only want to buy 1 house!)

n additive buyers: buyer i’s value for set S is ) jes Vij-

n subadditive buyers for some subadditive functions

e n buyers who are k-demand: buyer i’s value for a set of items S is max| g/ s/cg jes Vij-

n matroid-demand buyers for some matroid
e ...

With m heterogenous items, it’s possible that our buyers could have different valuations for every
single one of the 2" bundles of items—that is why this general setting is referred to as combinatorial
auctions.

Then how can we maximize welfare in this setting? How can we do so tractably? How can we
even elicit preferences in a tractable way?

Theorem 1 (The Vickrey-Clarke-Groves (VCG) Mechanism). In every general mechanism design
environment, there is a DSIC welfare-maximizing mechanism.

Given bids by, ..., b, where each bid is indexed by the possible outcomes €2, we define the welfare-
maximizing allocation rule x by

x(b) = argmax ¢ Z bi(w).
i=1

Now that things are multidimensional, there’s no more Myerson’s Lemma! In multiple dimensions,

what is monotonicity? What would the critical bid be?

Instead, we have bidders pay their externality—the loss of welfare caused due to ¢’s participation:

pi(b) = max > b (W)= > bj(w")
i J#i

v~

without ¢ with 4

where w* = x(b) is the outcome chosen when i does participate.



Claim 1. The VCG mechanism is DSIC.

Proof. We show that the mechanism with (z,p) is DSIC: that setting b; = v; maximizes utility
vi(x(b)) — pi(b). Fix i and b_;.
When the chosen outcome x(b) is w*, ¢’s utility is

) = i) = o) + )] - | max by
i#i R
The second term is independent of ¢’s bid. The first term is equal to social welfare, which x is

chosen to maximize for the input bids. Thus the mechanism is aligned with 4’s incentives, and #’s
utility is maximized when ¢ reports their true valuations. O

Exercise (optional): Prove that the payment p;(b) is always non-negative (and so the mechanism
is IR).

Proof. The outcome in the first term of the payment is chosen to maximize it, whereas the second
term is the same but not with the optimal outcome for the term, hence the first term is larger. [

Ascending Auctions

In ascending auctions, an auctioneer initializes prices for each item, iteratively raises the prices,
and bidders decide which items to bid on in each round. Sometimes activity rules are enforced,
e.g., once you drop out on an item, you can not bid on it again.

The most famous ascending auction is the single-item version, the English Auction.

The English Auction(e):

a. Initialize the item’s price pg to 0.
b. The initial set Sy of “active bidders” (willing to pay pg for the item) is all bidders.
c. For iterationt =1,2,...:

(a) Ask the set of active bidders S;_; if they’re willing to pay p;—1 +¢. Let S; be the bidders
who say yes. (Hopefully, v; > p;—1 +¢.)

(b) If |S;| < 1: terminate the auction. Allocate the item to the remaining active bidder at
a price of p;_1. If no bidders remain, randomly allocate to a bidder from S;_1 at p;_1.

(¢) Otherwise, py = pr—1 + €.
Benefits of using ascending auctions:

e Ascending auctions are easier for bidders. It is generally easier to answer simple queries than
to report a valuation. This point will become especially relevant in more complex scenarios.

e Less information leakage. The winner of an ascending auction does not reveal its valuation,
just the fact that it is at least the second-highest bid.



e Transparency. The cause of a high selling price is generally more obvious in open ascending
auctions than in sealed-bid auctions.

e Potentially more seller revenue. For example, ascending auctions encourage “bidding wars.”
There is also some supporting theoretical work on this point [1].

e When there are multiple items, the opportunity for “price discovery.” A bidder has the op-
portunity for mid-course corrections and to better coordinate with other bidders.

What about k identical items? What should we do here?
The English Auction for k Identical Items:
The same as above, but replace step 3(b) with the following:

(b) If |S¢| < k: terminate the auction. Allocate the items to the remaining active bidders at a
price of p;_;. If there are items leftover (i.e., k —|S¢| > 0), randomly allocate them to bidders from
St—1\ St at py1.

Definition 1. In an ascending auction, sincere bidding means that a player answers all queries
honestly.

Claim 2. In the k identical item setting, in an English auction, sincere bidding is a dominant
strategy for every bidder (up to €).

Claim 3. In the k identical item setting, if all bidders bid sincerely in an English auction, the
welfare of the outcome is within ke of the maximum possible.

The English auction for k£ Identical Items terminates in vyax/€ iterations.
The above claims are left as an exercise.

We can use the following design process for ascending auctions:
a. As a sanity check, design a direct-revelation DSIC welfare-maximizing polytime mechanism.

b. Implement this as an ascending auction.

¢]

. (Truthfulness) Check that its EPIC.

d. (Performance) Check that it still maximizes welfare under sincere bidding.

0]

. (Tractability) Check that it terminates in a reasonable number of iterations.

Additive Valuations, Parallel Auctions

The Additive Setting: There are m non-identical items and n bidders where each bidder i has
private valuation v;; for each item j. Bidder ¢ has an additive valuation for each set S, that is,

Uz(S) = Zvij.

jES



Step 1: What is the welfare-optimal direct revelation mechanism here? Just handle each item
separately—m Vickrey auctions!

What’s the analogous ascending implementation?

Parallel English Auctions: Maintain a set of interested bidders for each item, and the auction
for item j terminates when there’s only one active bidder remaining, breaking ties arbitrarily.

Is this DSIC? No!
Example: Two bidders, two items. v; = (3,2) and vo = (2,1).

What happens under sincere bidding? The first bidder wins both items at prices of 2 and 1
respectively.

Alternatively, bidder 2 could threaten the following strategy: if bidder 1 bids on item 1 in the
first turn, then bidder 2 will keep bidding on both items forever (or up to a price of 3). If not, they
will bid sincerely until the auction terminates.

Then bidder 1 bidding sincerely triggers bidder 2’s threat, causing bidder 1 to lose both items,
so bidder 1 would prefer to abandon item 1.

Recall that a dominant strategy maximizes a bidder’s utility independent of the actions played
by any other player. Bidder 2’s strategy may not maximize their utility, but it still implies that
sincere bidding is not a dominant strategy for bidder 1.

Instead, we need a different solution concept.

Definition 2. A strategy profile (o1,...,0,) is an ex post Nash equilibrium (EPNE) if, for every
bidder i and valuation v; € V;, the strategy o;(v;) is a best-response to every strategy profile
J_i(V_i) with v_; € V_;.

In comparison, in a dominant-strategy equilibrium (DSE), for every bidder ¢ and valuation v;, the
action o;(v;) is a best response to every action profile a_; of A_;, whether of the form o_;(v_;) or
not.

Definition 3. A mechanism is ez post incentive compatible (EPIC) if sincere bidding is an ex post
Nash equilibrium in which all bidders always receive nonnegative utility.

Claim 4. For n additive bidders with m heterogenous items, in parallel English auctions, sincere
bidding by all bidders is an ex post Nash equilibrium (up to me).
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