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Robustness: Prior-Independence

“Prior-independent” results give us guarantees in the event that the designer doesn’t know the
distribution F from which the bidders’ values are drawn. In this case, we assume that their values
are still drawn from a prior distribution, as in the Bayesian setting, so there is some revenue-optimal
mechanism opt(F ) that we wish to approximate, we just have to do so without knowing F .

The Bulow-Klemperer Result

One famous result takes the form of resource augmentation.

Theorem 1 (Bulow Klemperer [1]). For i.i.d. regular single-item environments, the expected
revenue of the second-price auction with n + 1 agents is at least that of the optimal auction with n
agents.

Let’s talk about what this theorem is saying. Instead of finding the optimal auction tailored to
a distribution F for n agents, you can use the Vickrey auction, which requires no prior knowledge
of the distribution, so long as:

•

•

This result does not hold without these assumptions. However, it is a very strong result, should
our setting meet these assumptions.

Proof.



The Single Sample Mechanism

Can’t recruit extra buyers? Instead, we can just exclude one. This is what the single sample result
says.

Theorem 2 (Dhangwatnotai Roughgarden Yan [2]). Given a random sample from a bidder’s
distribution, posting it as a take-it-or-leave-it price gives a 1

2 -approximation to the optimal revenue.

Figure 1: Geometric intuition for a posted-price from a single sample.

Proof. In quantile space!

It turns out, using a single sample from the buyers’ distribution to set reserve prices and running
VCG is a good approximation to the optimal mechanism. See Hartline chapter 5 for more.



Prophet Inequalities

Summary of the setting:

• Goal: Pick one item; maximize its value.

• Gambler knows distribution for each item.

• Order is adversarial.

• Inspect each item online (see vi) and irrevocably decide whether to take or pass forever.

• Compete with opt = Ev[maxi vi].

The Prophet Inequality problem was posed by Samuel-Cahn ’84 [7], with the original solution and
analysis that we’ll see by Krengel Sucheston ’78 [6] and Garling. It was brought to Algorithmic
Mechanism Design by Hajiaghayi Kleinberg Sandholm ’07 [3], and a new analysis for this case was
developed by Kleinberg Weinberg ’12 [4, 5].

Figure 2: The prophet inequality problem.

Theorem 3. There is a threshold algorithm Alg such that when the gambler takes an item if and
only if its value is above T , Alg ≥ 1

2opt.

Note: Can you find two different thresholds that give this same approximation?

Proof. We consider two different ways to set the threshold. Let p denote the probability that
some (at least one) vi ≥ T for i ∈ [n].

Exercise: You could see this as a mechanism for a buyer to maximize social welfare. Could you
design a mechanism to maximize revenue using the prophet inequality?
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