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Langrangian Duality for Revenue Approximation [CDW ’16]

(Recap.) We use the Lagrangian theory of duality to formulate the general Lagrangian linear pro-
gram for revenue maximization. The following theory is due to Yang Cai, Nikhil Devanur, and Matt
Weinberg [CDW ’16]. We will let vi be a vector which can be indexed for each item j. Similarly for
allocation x at bidder i and item j. Vi represents the type space, or the support of the distribution
Fi—the possible valuations that vi can take.

We use ∅ to denote the type of not participating in the auction. Let V +
i = Vi ∪ {∅}. We

use P to denote the polytope of feasible allocation rules.

Decision variables interim allocations xij(vi) and payments pi(vi).

max
n∑
i=1

∑
vi∈Vi

fi(vi) · pi(vi)

s.t. xi(vi) · vi − pi(vi) ≥ xi(v′i) · vi − pi(v′i) ∀i, vi ∈ Vi, v′i ∈ V +
i (dual variable λi(vi, v

′
i))

x ∈ P

Partial Lagrangian Primal:

max
x∈P,p

min
λ≥0

L(λ;x, p)

where

L(λ;x, p) =
n∑
i=1

∑
vi∈Vi

fi(vi) · pi(vi) +
∑
vi∈Vi

∑
v′i∈V

+
i

λi(vi, v
′
i) ·
(
vi ·
(
x(vi)− x(v′i)

)
−
(
pi(vi)− pi(v′i)

))
=

n∑
i=1

∑
vi∈Vi

pi(vi)

fi(vi) +
∑
v′i∈Vi

λi(v
′
i, vi)−

∑
v′i∈V

+
i

λi(vi, v
′
i)

+

n∑
i=1

∑
vi∈Vi

xi(vi)

 ∑
v′i∈V

+
i

vi · λi(vi, v′i)−
∑
v′i∈Vi

v′i · λi(v′i, vi)


Partial Lagrangian Dual:

min
λ≥0

max
x∈P,p

L(λ;x, p)

For the dual to provide a useful (finite) upper bound we need maxx∈P,p L(λ;x, p) < ∞. For this
to be true, we must have the coefficient of pi(vi) equal to 0, that is:

fi(vi) +
∑
v′i∈Vi

λi(v
′
i, vi) =

∑
v′i∈V

+
i

λi(vi, v
′
i).



We think of this as a “flow conservation” constraint in the following set-up. A dual solution λ is
useful if and only if for each bidder i, λi forms a valid flow, i.e., if and only if the following satisfies
flow conservation at all nodes except the source and the sink:

• Nodes: A super source s and a super sink ∅, along with a node vi for every type vi ∈ Vi.

• Flow from s to vi of weight fi(vi) for all vi ∈ Vi.

• Flow from v to v′ of weight λi(v, v
′) for all v ∈ V and v′ ∈ V + (including the sink ∅).

Then
n∑
i=1

∑
vi∈Vi

fi(vi)pi(vi) ≤
n∑
i=1

∑
vi∈Vi

fi(vi) · xi(vi) · Φλ
i (vi)

for

Φλ
i (vi) = vi −

1

fi(vi)

∑
v′i∈Vi

λi(v
′
i, vi)(v

′
i − vi).

and this holds with equality if and only if x, p, λ are optimal solutions to the primal and dual
respectively.

The Canonical Flow

The way that we will set the dual variables, which is in fact optimal in the single-dimensional
setting, is as follows: λi(v, v + 1) = 1− Fi(v + 1) = Prvi [vi > v + 1]. All other λi(v, v

′) = 0 except
λi(0,∅) = 1. Then

Φλ
i (vi) = ϕi(vi)

is Myerson’s virtual value.

Figure 1: Left: The single-dimensional canonical dual resulting in Myersonian virtual values. Right:
The process for ironing.

Ironing

For a non-monotone interval [L,H] in which Φλ
i (L) > · · · > Φλ

i (H), we augment the following dual
variables until Φλ

i (L) = · · · = Φλ
i (H) by increasing λi(v+1, v) and λi(v, v+1) by ε for v ∈ [L,H−1].



The Unit-Demand Setting

Let Pij(v−i) denote the price that bidder i could pay to receive exactly item j in the VCG mech-
anism against other bidders with values v−i. We then let R

v−i

j contain all types vi such that

j ∈ argmaxk{(vik − Pik(v−i))
+}. That is, R

v−i

j is the set of valuations under which bidder i prefers

item j at the VCG price, breaking ties lexicographically (by smallest item index)—if vi ∈ R
v−i

j

then item j is bidder i’s favorite item under valuation profile v. R
v−i

0 is the set of valuations such
that bidder i prefers no item—all prices lead to negative utility.

Then our “canonical flow” is as follows for bidder i.

Figure 2: Left: The single-dimensional canonical dual resulting in Myersonian virtual values. Right:
The process for ironing.

(We drop the subscripts i in what follows as we focus just on a specific bidder i when v−i is fixed.
To achieve an actual multi-bidder dual, we average over v−i.)

Then for v ∈ Rj , λ ((vj + 1, v−j), (vj + 1, v−j)) = f−j(v−j)[1−Fj(vj)], and all other λ are 0 except
λ(v,∅) used to ensure flow conservation.

Claim 1. Under the above dual variables, we get that:

• For any type vi ∈ Rv−i

j , its corresponding virtual value Φ
v−i

ik (vi) for item k is exactly its value
vik for all non-favorite k 6= j.

• For any type vi ∈ Rv−i

j , its corresponding virtual value Φ
v−i

ij (vi) for favorite item j is exactly

ϕij(vij) = vij − 1−Fij(vij)
fij(vij)

.



• The following is true:

Rev(F ) =
∑
i

∑
vi∈Vi

fi(vi) · pi(vi) ≤
∑
i

∑
vi∈Vi

∑
j

fi(vi) · x̂ij(vi) · Φij(vi)

≤
∑
i

∑
vi∈Vi

∑
j

fi(vi) · x̂ij(vi) ·
(
vij · Prv−i

[
vi 6∈ R(v−i)

j

]
+ ϕ̄ij(vij) · Prv−i

[
vi ∈ R(v−i)

j

])
Further, for a single unit-demand bidder, the above quantity is equal to

=
∑
v∈V

∑
j

f(v) · x̂j(v) · vj · 1[v 6∈ Rj ] (Non-Favorite)

+
∑
v∈V

∑
j

f(v) · x̂j(v) · ϕ̄j(vj) · 1[v ∈ Rj ] (Single)

We will introduce the “copies setting” to show that for a single unit-demand bidder, we can bound
optimal revenue by 2 · optCopies.

The Copies Setting. [Chawla Hartline Kleinberg EC ’07]

• Description: For any multi-dimensional instance F we can imagine splitting bidder i into m
different copies, with bidder i’s copy j interested only in receiving item j and nothing else.
The copies bidders are now in competition with one another (they no longer coordinate).
However, any feasibility constraint still applies—if bidder i is unit demand, then at most one
of i’s copies can be allocated to.

• This is a single-dimensional setting with nm single-dimensional bidders, where copy (i, j)’s
value for winning is vij (just one parameter—which is still drawn from Fij).

• optCopies(F ) = the revenue of Myerson’s optimal auction [Mye81] in the copies setting in-
duced by F .

Lemma 1. For any feasible x̂(·), Single ≤ optCopies.

Proof. Recall that

Single =
∑
v∈V

∑
j

f(v) · x̂j(v) · ϕ̄j(vj) · 1[v ∈ Rj ].

Let M be the mechanism that induces x̂(·). Consider the mechanism M ′ that serves agent j if and
only if M would allocate item j in the original setting and v ∈ Rj . Then an agent j with type vj
has probability of being served in M ′:∑

v−j

f−j(v−j) · x̂j(vj , v−j) · 1[v ∈ Rj ]

for all j and vj . Because the Copies setting is single-dimensional, then Single is the ironed virtual
welfare achieved by M ′ with respect to ϕ̄(·). Then the optimal revenue optCopies equals the
maximum ironed virtual welfare, which can only be larger than Single. (Note that this proof
makes use of the assumption that item values are independent, as otherwise Myerson’s theory
doesn’t apply.)



Lemma 2. When the types are unit-demand, for any feasible x̂(·), Non-Favorite ≤ optCopies.

Proof. Recall that

Non-Favorite =
∑
v∈V

∑
j

f(v) · x̂j(v) · vj · 1[v 6∈ Rj ].

Define S(v) to be the second largest number in {v1, · · · , vm}. When the types are unit-demand,
the Copies setting is a single-item auction with m bidders—they bid for the single item that is
“winning,” and then based on the agent, that item is allocated their preferred item. Therefore,
if we run the Vickrey auction in the Copies setting, the revenue is

∑
v∈V f(v) · S(v). If v 6∈ Rj ,

then there exists some k 6= j such that vk ≥ vj , so vj · 1[v 6∈ Rj ] ≤ S(v) for all j. Therefore,∑
v∈V

∑
j f(v) · x̂j(v) · vj · 1[v 6∈ Rj ] ≤

∑
v∈V

∑
j f(v) · x̂j(v) · S(v) ≤

∑
v∈V f(v) · S(v). The last

inequality is because the bidder is unit demand, so
∑

j x̂j(v) ≤ 1.
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