
DS 320 Algorithms for Data Science Lecture #1
Spring 2022 Prof. Kira Goldner

Covered in introduction slides:

• Course policies (also in syllabus).

• What to expect in this class (also in FAQ).

• Sample of content we’ll cover.

Runtime Review

We will analyze the runtime of the following algorithm.

Algorithm 1 FindMinIndex(B[t+ 1, n]).

Let MinIndex = t+ 1.
for i = t+ 1 to n do

if B[i] < B[MinIndex] then
MinIndex = i.

end if
end for
return MinIndex.

When we analyze runtime, we’ll do an informal accounting. We’ll count basic operations (alge-
bra, array assignment, etc) as constant time. This isn’t quite right—for example, multiplication of
large numbers should scale with the bit complexity—but is a good approximation for us. We will
analyze runtime by counting these operations.

Each of the following lines is a unit (constant-time) operation:

• Let MinIndex = t+ 1.

• if B[i] < B[MinIndex] then

• MinIndex = i.

The for-loop runs n − t times (notice that both n and t are variables as they are in our input).
Thus the runtime of this algorithm is O(n− t).

Asymptotic Notation

Definition 1 (Upper bound O(·)). For a pair of functions f, g : N → R, we write f ∈ O(g(n)) if
there exist constants c1, c2 such that for all n ≥ c1,

f(n) ≤ c2g(n).

We’ll often write f(n) = O(g(n)) because we are sloppy.



Translation: For large n (at least some c1), the function g(n) dominates f(n) up to a constant
factor.

Definition 2 (Lower bound Ω(·)). For a pair of functions f, g : N → R, we write f ∈ Ω(g(n)) if
there exist constants c1, c2 such that for all n ≥ c1,

f(n) ≥ c2g(n).

Definition 3 (Tight bound Θ(·)). For a pair of functions f, g : N → R, we write f ∈ Θ(g(n)) if
f ∈ O(g(n)) and f ∈ Ω(g(n)).

Exercise: True or False?

f(n) g(n) O(g(n)) Ω(g(n)) Θ(g(n))

106n3 + 2n2 − n+ 10 n3 T T T√
n+ log n

√
n T T T

n(log n+
√
n)

√
n F T F

n n2 T F F

Example solution: Let f(n) = 106n3 +2n2−n+10. For c2 = (106 +12), 106n3 +2n2−n+10 ≤ c2n
3

for all n ≥ 1, hence it is true that f(n) = O(n3). For c2 = 1, 106n3 + 2n2− n+ 10 ≤ c2n
3, hence it

is true that it is f(n) = Ω(n3). Since f(n) = O(n3) and f(n) = Ω(n3), then f(n) = Θ(n3) as well.

Definition 4 (Strict upper bound o(·)). For a pair of functions f, g : N→ R, we write f ∈ o(g(n))
if

lim
n→∞

f(n)

g(n)
= 0,

or equivalently, for any constant c2 > 0, there exists a constant c1 such that for all n ≥ c1,

f(n) < c2g(n).

Definition 5 (Strict lower bound ω(·)). For a pair of functions f, g : N→ R, we write f ∈ ω(g(n))
if

lim
n→∞

f(n)

g(n)
=∞,

or equivalently, for any constant c2 > 0, there exists a constant c1 such that for all n ≥ c1,

f(n) > c2g(n).

Asymptotic Properties

• Multiplication by a constant:

If f(n) = O(g(n)) then for any c > 0, c · f(n) = O(g(n)).

• Transitivity:

If f(n) = O(h(n)) and h(n) = O(g(n)) then f(n) = O(g(n)).



• Symmetry:

If f(n) = O(g(n)) then g(n) = Ω(f(n)).

If f(n) = Θ(g(n)) then g(n) = Θ(f(n)).

• Dominant Terms:

If f(n) = O(g(n)) and d(n) = O(e(n)) then f(n) + d(n) = O(max{g(n), e(n)}). It’s fine to
write this as O(g(n) + e(n)).

Common Functions

• Polynomials: a0 + a1n+ · · ·+ adn
d is Θ(nd) if ad > 0.

• Polynomial time: Running time is O(nd) for some constant d independent of the input size
n.

• Logarithms: loga n = Θ(logb n) for all constants a, b > 0. This means we can avoid specifying
the base of the logarithm.

For every x > 0, log n = o(nx). Hence log grows slower than every polynomial.

• Exponentials: For all r > 1 and all d > 0, nd = o(rn). Every polynomial grows slower than
every exponential

• Factorial: By Sterling’s formula, factorials grow faster than every exponential:

n! = (
√

2πn)
(n
e

)n
(1 + o(1)) = 2Θ(n logn).


