Menu Complexity
 for the Space Between Single- and Multi-Dimensional Mechanism Design

KIRA GOLDNER, UNIVERSITY OF WASHINGTON yannal a. gonczarowski, hebrew u. And msr

Recap of
 Before the Break

3 items for sale

Goal: Determine who gets what and who pays what

Identical:

- "single-dimensional"

All different:

- "multi-dimensional"
- Combinatorial valuations
- Additive Valuations
- Independent valuations

Something in between?

Taxation and Menus

Question: What size of menu is needed to guarantee revenue?

$$
\begin{aligned}
& \text { Buyer with } v \text { picks } \\
& \text { own option } \\
& \hline
\end{aligned}
$$

Incentive-compatibility (truthfulness): For all w, $u(v)>u(w \mid v)$
Restricting to IC (truthful) mechanisms is without loss.

n items for sale

Identical:

- "single-dimensional"

Optimal
menu size 1

Approximate

menu size 1

All different:

- "multi-dimensional"
- Combinatorial valuations
- Additive Valuations
- Independent valuations menu size

Something in between?

Menu Complexity for Approximation:

 1 buyer, additive over n independent items

Multi-Dimensional Menu Complexity for n Items

Optimal Menu Complexity Spectrum

Lower Bounds for $(1-\varepsilon)$-approximations

To Come

The degree of complexity in the menu comes from the IC constraints which stitch together otherwise separate 1D problems.

Methods for understanding this:

- Part I: Revenue Curves
- Part II: Complementary Slackness conditions

Part I:

Revenue Curves

METHODOLOGY FOR UNDERSTANDING THE NUMBER OF PRICES NEEDED

Mapping Prices to Revenue

Allocation Rules and Prices

Allocation Rules and Prices

Menu

$$
\begin{aligned}
& \left(1, \frac{1}{3} \underline{p}+\frac{2}{3} \bar{p}\right) \\
& \left(\frac{1}{3}, \frac{1}{3} \underline{p}\right) \\
& (0,0)
\end{aligned}
$$

Menu Size $=2$
= \# prices in supp

Any allocation is a dist. over prices

Randomized Pricings

"Ironed" Revenue Curve

Least concave upper bound on curve (in value space)

The FedEx Setting

[FIAT GOLDNER KARLIN KOUSTOUPIAS 2016]

The FedEx Setting

The FedEx Setting

How do we maximize revenue for 2 days?

How do we maximize revenue for 2 days?

1-day shipping

Day 2
revenue curve

FedEx
Revenue Curves

Constrained revenue from Day 2:

Price for day 1

Constrained revenue from Day 2:

What to optimize: 둘

What to optimize:

What to optimize:

Optimal Variables

Optimal Allocation Rule

Optimal Allocation Rule

Bad Example

Exponential Menu Complexity

Upper Bound: In the worst case, each deadline i has 2^{i-1} options. [Fiat G. Karlin Koutsoupias '16]

Lower Bound: Distributions exist for this example, forcing 2^{i-1} options for each deadline.
[Saxena Schvartzman Weinberg '18]
Menu size is $2^{n}-1$ overall, tight.

Approximate
FedEx Menu
Complexity
[SAXENA SCHVARTZMAN WEINBERG 2018]

Limiting Menu Complexity

How can we achieve good revenue with a small menu, or equivalently randomizing over fewer prices?

Idea: We only randomize over un-ironed peaks. What if we constrain this number?

Revenue via Polygon Approximation

Menu size is limited by the \# points supporting the curve.

Menu Complexity for $(1-\varepsilon)$-approx
Upper Bound: $O\left(n^{\frac{3}{2}} \sqrt{\frac{\min \left\{\frac{n}{\varepsilon} \ln (H)\right\}}{\varepsilon}}\right)=O\left(\frac{n^{2}}{\varepsilon}\right)$
Lower Bound: $\Omega\left(n^{2}\right)=\Omega\left(\frac{1}{\varepsilon}\right)$ for $\varepsilon=O\left(\frac{1}{n^{2}}\right)$

Revenue Curve Recap

- Splitting into multiple prices originates from IC constraints.
- Curves depict the limits of how prices can split.
- Essentially any combination of peaks/valleys can exist. [Saxena Schvartzman Weinberg '18]
- When the mechanism is determined by revenue curves, approximation can be done via revenue curve approximation.

Part II:

 Duality ApproachMETHODOLOGY FOR REASONING ABOUT WHEN ALLOCATION PROBABILITIES MUST BE DISTINCT

The Primal

Maximize

 $\mathrm{E}[\mathrm{Rev}]$ subject to:more utility for (v,i) than (v^{\prime}, i^{\prime}) feasibility

Maximize

E[Virtual Welfare]

subject to:
more utility for (v,i) than (v,i') weak monotonicity of allocation feasibility

Duality

Primal maximize subject to $\mathrm{g}(\mathrm{x}) \geq 0$

Dual

minimize $\quad h(y)$
subject to $r(y) \leq 0$

Optimal pair $(\mathrm{x}, \mathrm{y}) \Leftrightarrow$ complementary slackness is satisfied, feasible: $g(x)=0$ or $y=0 ; h(y)=0$ or $x=0$.

Lagrangian Primal: maximize $_{x}$ minimize $_{y} f(x)+y g(x)$.
Lagrangian Dual: minimize maximize $_{x} f(x)+y g(x)$.
Complementary slackness: $\mathrm{g}(\mathrm{x})=0$ or $\mathrm{y}=0$.

The Primal
 $a_{i}(v):=\operatorname{Pr}[i-$ day shipping to bidder with $(v, i)]$

maximize

$$
\sum_{i} \int_{0}^{H} f_{i}(v) \varphi_{i}(v) a_{i}(v) d v
$$

$=E\left[r_{r e v}^{i}\right]$ using payment identity

subject to:

Dual variables

$$
\begin{array}{rlrl}
\int_{0}^{v} a_{i}(x) d x-\int_{0}^{v} a_{i-1}(x) d x \geq 0 & \text { Report iover i' } & \alpha_{i, i-1}(v) \quad \forall i \in\{2, \ldots, n\} \\
a_{i}^{\prime}(v) & \geq 0 & \text { Report vover v } & \lambda_{i}(v)
\end{array} \forall i, v
$$

The Dual

 $a_{i}(v):=\operatorname{Pr}[i-$ day shipping to bidder with $(v, i)]$minimize $\lambda_{\lambda, \alpha}$ maximize $_{\text {feasible } a}$

$$
\sum_{i} \int_{0}^{v} f_{i}(v) a_{i}(v) \Phi_{i}(v) d v
$$

where

$$
\Phi_{i}(v):=\varphi_{i}(v)+\frac{\left(\int_{v}^{H} \alpha_{i, i-1}(x) d x-\int_{v}^{H} \alpha_{i+1, i}(x) d x\right)-\lambda_{i}^{\prime}(v)}{f_{i}(v)}
$$

An Optimal Primal/Dual Pair

minimize $\lambda_{\lambda, \alpha}$ maximize $_{\text {feasible } a}$

$$
\sum_{i} \int_{0}^{H} f_{i}(v) a_{i}(v) \Phi_{i}(v) d v
$$

Can't change λ, a to further minimize.

Complementary Slackness:
Constraint is tight $(=0)$ or dual variable is 0.
Report i over i' $\int_{0}^{v} a_{i}(x) d x-\int_{0}^{v} a_{i-1}(x) d x \geq 0$

Dual variables

$$
\begin{equation*}
a_{i}^{\prime}(v) \geq 0 \tag{i,i-1}
\end{equation*}
$$

$\lambda_{i}(v)$

Understanding Dual Variables

Virtual Values

It's left to us to determine the allocation in the zeroes to satisfy complementary slackness.

Dual Variable α (reporting i over i-1)

$$
\int_{0}^{v} a_{i}(x) d x-\int_{0}^{v} a_{i-1}(x) d x \geq 0 \text { Report i over i-1 } a_{i, i-\mathbb{1}}(v)
$$

Day 1
$f_{1}(v) \Phi_{1}(v) \begin{array}{r}H+ \\ + \\ \hline\end{array}$

Complementary Slackness: Inter-day utility is equal ($u_{1}=u_{2}$) where $\alpha_{2,1}$ is positive.

Dual Variable λ : (reporting v over v^{\prime})

Complementary Slackness:
Utility is equal for reporting just under $v-a_{i}{ }^{\prime}(v)=0$.
The allocation is constant in ironed intervals: $a_{i}(v)=a_{i}(y)$.

Recap

Because a maximizes VW,
$\Phi_{i}(v)>0 \Longrightarrow a_{i}(v)=1$ and $\Phi_{i}(v)<0 \Longrightarrow a_{i}(v)=0$
Complementary slackness with λ :
$\lambda_{i}(v)>0$ means v is in an ironed interval $[\underline{v}, \bar{v}]$ and implies
$a_{i}(v)$ is constant on $[\underline{v}, \bar{v}]$, or $a_{i}(\boldsymbol{v})=a_{i}(\underline{v})$.
Complementary slackness with α :
$\alpha_{i, i-1}(v)>0$ implies utility is equal across deadlines $\mathrm{i}, \mathrm{i}-1$

$$
\begin{aligned}
& \Phi>0 \Rightarrow a=1 \text { and } \Phi<0 \Longrightarrow a=0 \\
& \lambda_{i}(v)>0 \Rightarrow \text { allocation constant } \\
& \alpha_{i, i-1}(v)>0 \Rightarrow \text { utility of } \mathrm{i}, \mathrm{i}-1 \text { equal at } \mathrm{v}
\end{aligned}
$$

Implications for the Primal

VIA COMPLEMENTARY SLACKNESS

Splitting the allocation

FedEx Worst Case

1
$\underline{2}$
$\underline{3}$

FedEx Menu Complexity

- Exponentially many prices for day $i\left(2^{i-1}\right)$
- Exponentially many prices total (2n-1) [Fiat G. Karlin Koutsoupias '16]
- Proven to be tight. [Saxena Schvartzman Weinberg '18]

The Budgets Setting

how much the item is worth

Budget

 optionsB_{1}
B_{2}

$$
(v, B) \sim F
$$

B_{3}

budget B

= how much they can afford

Result: At most $3 \cdot 2^{n-1}-1$ prices.
B_{n}

Partially-Ordered Items

[DEVANUR GOLDNER SAXENA SCHVARTZMAN WEINBERG 2018]

The Partially-Ordered Setting

An Optimal Primal/Dual Pair

(1) minimize ${ }_{\lambda, \alpha}$ maximize $_{\text {feasible } a}$

$$
\sum_{G} \int_{0}^{H} f_{G}(v) a_{G}(v) \Phi_{G}(v) d v
$$

Can't change λ, a to further minimize.
Complementary Slackness:
Constraint is tight $(=0)$ or dual variable is 0.

For all $G^{\prime} \in N^{+}(G)$

Dual variables

$$
a_{G}^{\prime}(v) \geq 0
$$

$$
\lambda_{G}(v)
$$

Dual Variables and Virtual Values

Complementary Slackness:
Utility of G and G^{\prime} are equal where $\alpha_{\mathrm{G}, \mathrm{G}^{\prime}}>0$.

Dual Variables and Virtual Values

Interest A
$\alpha_{C, A}(v)>0$

Interest B
H •

$$
\begin{aligned}
& \Phi>0 \Rightarrow a=1 \text { and } \Phi<0 \Rightarrow a=0 \\
& \lambda_{G}(v)>0 \Rightarrow \text { allocation constant }
\end{aligned}
$$

$\alpha_{C, A}(v)>0 \Longrightarrow A$ is preferable to B at v
$\alpha_{C, B}(v)>0$

Menu Complexity Lower Bound

Key Idea for the Lower Bound

Key Idea for the Lower Bound

Key Idea for the Lower Bound

Lower Bound

$$
\begin{aligned}
& \Phi>0 \Rightarrow a=1 \text { and } \Phi<0 \Rightarrow a=0 \\
& \lambda_{G}(v)>0 \Rightarrow \text { allocation constant } \\
& \alpha_{C, A}(v)>0 \Rightarrow \mathrm{~A} \text { is preferable to } \mathrm{B} \text { at } \mathrm{v}
\end{aligned}
$$

For any M:

$$
\begin{aligned}
& \text { A } \\
& a_{B}\left(x_{1}\right)=1 \\
& a_{B}\left(x_{2}\right)>0 \\
& >a_{A}\left(x_{3}\right) \\
& a_{B}\left(x_{4}\right)>0 \\
& >a_{A}\left(x_{5}\right) \\
& a_{B}\left(\underline{r}_{B}\right)>0 \\
& >a_{A}\left(\underline{r}_{A}\right)
\end{aligned}
$$

> M different options are presented to the buyer.

Master Theorem (Informal)

For any dual that is given only by signs and nonnegative variables (ironed intervals $+\alpha$ flow), there exists a distribution that causes this dual.

$$
\underline{\mathbf{A}} \quad \underline{\mathbf{B}}
$$

Corollary:
The "bad dual" exists.

$$
\bar{r}_{A} \frac{+}{+}
$$

Menu Complexity Upper Bound

Upper bound

A chain is a sequence of overlapping ironed intervals with $\alpha>0$ at specific points.

If there are M such intervals, the menu size is at most 2 M - finite.

If there are infinitely many intervals, they're bounded and monotone, so they converge to a point that has virtual value 0 and is un-ironed for both A and B - menu size 1.

Always finite!

Multi-Unit Pricing Lower Bound

The Multi-Unit Pricing Setting

Extension to MUP

Summary

The Settings

Each buyer has a most-preferred-outcome (e.g. 3-day shipping).

The outcomes are structured such that a buyer's value for this outcome tells you his value for all outcomes.

Properties:

- Collapsible allocation rule: degree of happiness
- Reduced IC constraints: specified by structure
- Single-dimensional perks: payment identity, etc

The Methods

Revenue Curves:

- Exactly where complexity grows or "splits"
- Limits of splitting
- Approximation via polygons

Complementary Slackness conditions:

- Where are certain outcomes preferred?
- Where must the allocation be positive?
- Where must the allocation be distinct, forcing different menu options?
- What are the limits to this?

Optimal Menu Complexity Spectrum

Lower Bounds for $(1-\varepsilon)$-approximations

Multi-Dimensional Menu Complexity for n Items

Key Open Problems

- Other settings with more complex IC links?
- Lower bounds in terms of ε ?
- Constant-factor approximations?
- Multiple bidders?
- Filling out the questions asked in Yannai's talk in this setting.

Thank you!

