Menu Complexity for the Space Between Single- and Multi-Dimensional Mechanism Design

KIRA GOLDNER, UNIVERSITY OF WASHINGTON YANNAI A. GONCZAROWSKI, HEBREW U. AND MSR

Recap of Before the Break

3 items for sale

Goal: Determine who gets what and who pays what

Identical: • "single-dimensional"

All different:

- "multi-dimensional"
 - Combinatorial valuations
 - Additive Valuations
 - Independent valuations

Something in between?

Taxation and Menus

Incentive-compatibility (truthfulness): For all w, u(v) > u(w | v)

Restricting to IC (truthful) mechanisms is without loss.

n items for sale

Identical:	<u>Optimal</u>	<u>Approximate</u>
 "single-dimensional" 	menu size 1	menu size 1
All different: • "multi-dimensional" • Combinatorial valuations • Additive Valuations • Independent valuations	infinite menu size	<pre>infinite menu size finite menu size</pre>

Something in between?

Menu Complexity for Approximation: 1 buyer, additive over n independent items

Multi-Dimensional Menu Complexity for *n* Items

Optimal Menu Complexity Spectrum

Lower Bounds for $(1 - \varepsilon)$ -approximations

To Come

The degree of complexity in the menu comes from the IC constraints which stitch together otherwise separate 1D problems.

Methods for understanding this:

- Part I: Revenue Curves
- Part II: Complementary Slackness conditions

Part I: Revenue Curves

METHODOLOGY FOR UNDERSTANDING THE NUMBER OF PRICES NEEDED

Mapping Prices to Revenue

Allocation Rules and Prices

Allocation Rules and Prices

14

Any allocation is a dist. over prices

15

Randomized Pricings

"Ironed" Revenue Curve

Least concave upper bound on curve (in value space)

The FedEx Setting

[FIAT GOLDNER KARLIN KOUSTOUPIAS 2016]

[Fiat G. Karlin Koutsoupias '16]

The FedEx Setting

[Fiat G. Karlin Koutsoupias '16]

The FedEx Setting

How do we maximize revenue for 2 days?

How do we maximize revenue for 2 days?

FedEx Revenue Curves

Constrained revenue from Day 2:

Constrained revenue from Day 2:

What to optimize:

What to optimize:

Optimal Variables

Optimal Allocation Rule

Optimal Allocation Rule

Bad Example

Exponential Menu Complexity

Upper Bound: In the worst case, each deadline i has 2^{i-1} options. [Fiat G. Karlin Koutsoupias '16]

Lower Bound: Distributions exist for this example, forcing 2ⁱ⁻¹ options for each deadline.
[Saxena Schvartzman Weinberg '18]

Menu size is $2^n - 1$ overall, tight.

Approximate FedEx Menu Complexity

[SAXENA SCHVARTZMAN WEINBERG 2018]

Limiting Menu Complexity

How can we achieve good revenue with a **small menu**, or equivalently randomizing over **fewer prices**?

Idea: We only randomize over un-ironed peaks. What if we constrain this number?

[Saxena Schvartzman Weinberg '18]

Revenue via Polygon Approximation

Menu size is limited by the # points supporting the curve.
Menu Complexity for $(1 - \varepsilon)$ -approx

Upper Bound:
$$O\left(n^{\frac{3}{2}}\sqrt{\frac{\min\left\{\frac{n}{\varepsilon},\ln(H)\right\}}{\varepsilon}}\right) = O\left(\frac{n^{2}}{\varepsilon}\right)$$

Lower Bound: $\Omega(n^2) = \Omega\left(\frac{1}{\varepsilon}\right)$ for $\varepsilon = O\left(\frac{1}{n^2}\right)$

Revenue Curve Recap

- Splitting into multiple prices originates from IC constraints.
- Curves depict the limits of how prices can split.
- Essentially any combination of peaks/valleys can exist. [Saxena Schvartzman Weinberg '18]
- When the mechanism is determined by revenue curves, approximation can be done via revenue curve approximation.

Part II: Duality Approach

METHODOLOGY FOR REASONING ABOUT WHEN ALLOCATION PROBABILITIES MUST BE DISTINCT

The Primal

subject to: more utility for (v,i) than (v',i') feasibility

Maximize

E[Virtual Welfare]

subject to:

more utility for (v,i) than (v,i') weak monotonicity of allocation feasibility

Duality

Primal		Dual	
maximize	f(x)	minimize	h(y)
subject to	$g(\mathbf{x}) \ge 0$	subject to	r(y) ≤ 0

Optimal pair $(\mathbf{x}, \mathbf{y}) \Leftrightarrow$ complementary slackness is satisfied, feasible: $g(\mathbf{x}) = 0$ or $\mathbf{y} = 0$; $h(\mathbf{y}) = 0$ or $\mathbf{x} = 0$.

Lagrangian Primal: maximize_x minimize_y f(x) + y g(x).

Lagrangian Dual: minimize_v maximize_x f(x) + y g(x).

Complementary slackness: $g(\mathbf{x}) = 0$ or $\mathbf{y} = 0$.

The Primal
$$a_i(v) \coloneqq \Pr[i-\text{day shipping to bidder with } (v,i)]$$

maximize $\sum_i \int_0^H f_i(v) \varphi_i(v) a_i(v) dv$
 $= \mathbb{E}[\operatorname{rev}_i] \text{ using }$
payment identity
subject to: $Dual \text{ variables}$
 $a_i(x) dx - \int_0^v a_{i-1}(x) dx \ge 0$ Report i over i' $a_{i,i-1}(v) \quad \forall i \in \{2,...,n\}$
 $a_i'(v) \ge 0$ Report v over v' $\lambda_i(v) \quad \forall i, v$
 $a_i(v) \in [0,1]$ feasibility

The Dual $a_i(v) \coloneqq \Pr[i-\text{day shipping to bidder with } (v,i)]$

minimize $_{\lambda,\alpha}$ maximize $_{\text{feasible }a}$

$$\sum_{i} \int_{0}^{v} f_{i}(v) \boldsymbol{a_{i}(v)} \boldsymbol{\Phi_{i}(v)} dv$$

where

$$\Phi_{i}(\boldsymbol{v}) \coloneqq \varphi_{i}(\boldsymbol{v}) + \frac{\left(\int_{\boldsymbol{v}}^{H} \boldsymbol{\alpha}_{i,i-1}(\boldsymbol{x}) \, d\boldsymbol{x} - \int_{\boldsymbol{v}}^{H} \boldsymbol{\alpha}_{i+1,i}(\boldsymbol{x}) \, d\boldsymbol{x}\right) - \boldsymbol{\lambda}_{i}'(\boldsymbol{v})}{f_{i}(\boldsymbol{v})}$$

An Optimal Primal/Dual Pair

minimize $_{\lambda,\alpha}$ maximize $_{\text{feasible }a}$

$$\sum_{i} \int_{0}^{H} f_{i}(v) \boldsymbol{a}_{i}(v) \Phi_{i}(v) dv$$

Can't change λ, a to further minimize.

- I

· • •

Complementary Slackness:

Constraint is tight (= 0) or **dual variable** is 0.

Report i over i'
$$\int_{0}^{v} a_{i}(x) dx - \int_{0}^{v} a_{i-1}(x) dx \ge 0$$
Dual variablesReport v over v'
$$a_{i}(v) \ge 0$$
$$\lambda_{i}(v)$$

Understanding Dual Variables

Virtual Values

It's left to us to determine the allocation in the zeroes to satisfy complementary slackness.

Dual Variable α (reporting i over i-1)

Complementary Slackness:

Inter-day utility is equal ($u_1 = u_2$) where $\alpha_{2,1}$ is positive.

Dual Variable λ : (reporting v over v')

Recap

Because **a** maximizes VW, $\Phi_i(v) > 0 \Rightarrow a_i(v) = 1$ and $\Phi_i(v) < 0 \Rightarrow a_i(v) = 0$

Complementary slackness with λ : $\lambda_i(v) > 0$ means v is in an ironed interval $[\underline{v}, \overline{v}]$ and implies $a_i(v)$ is constant on $[v, \overline{v}]$, or $a_i(v) = a_i(v)$.

Complementary slackness with α : $\alpha_{i,i-1}(v) > 0$ implies **utility** is equal across deadlines i, i-1

 $\begin{array}{l} \Phi > 0 \Longrightarrow a = 1 \text{ and } \Phi < 0 \Longrightarrow a = 0 \\ \lambda_i(v) > 0 \Longrightarrow \text{ allocation constant} \\ \alpha_{i,i-1}(v) > 0 \Longrightarrow \text{ utility of i,i-1 equal at v} \end{array}$

Implications for the Primal

VIA COMPLEMENTARY SLACKNESS

Splitting the allocation

FedEx Worst Case

FedEx Menu Complexity

- Exponentially many prices for day i (2ⁱ⁻¹)
- Exponentially many prices total (2ⁿ-1) [Fiat G. Karlin Koutsoupias '16]
- Proven to be tight. [Saxena Schvartzman Weinberg '18]

[Devanur Weinberg '17]

The Budgets Setting

Partially-Ordered Items

[DEVANUR GOLDNER SAXENA SCHVARTZMAN WEINBERG 2018] [Devanur G. Saxena Schvartzman Weinberg '18]

The Partially-Ordered Setting

Dual Variables and Virtual Values

Dual Variables and Virtual Values

Menu Complexity Lower Bound

Key Idea for the Lower Bound

Key Idea for the Lower Bound

Key Idea for the Lower Bound

Lower Bound

 $\Phi > 0 \Rightarrow a = 1$ and $\Phi < 0 \Rightarrow a = 0$ $\lambda_G(v) > 0 \Rightarrow$ allocation constant $\alpha_{C,A}(v) > 0 \Rightarrow A$ is preferable to B at v

> M different options are presented to the buyer.

Master Theorem (Informal)

For any dual that is given only by **signs** and **nonnegative variables** (ironed intervals + α flow), there exists a distribution that causes this dual.

Menu Complexity Upper Bound

Upper bound

A chain is a sequence of overlapping ironed intervals with $\alpha > 0$ at specific points. A <u>B</u>

If there are M such intervals, the menu size is at most 2M – finite.

If there are **infinitely** many intervals, they're bounded and monotone, so they **converge** to a point that has virtual value 0 and is un-ironed for both A and B – menu size 1.

 \bar{r}_A , x_1 \overline{r}_B x_2 x_3 x_4 x_{M-2} x_{M-1} x_M \underline{r}_B \underline{r}_A

Always finite!

Multi-Unit Pricing Lower Bound

[Devanur Haghpanah Psomas '17]

The Multi-Unit Pricing Setting

Extension to MUP

Summary

The Settings

Each buyer has a **most-preferred-outcome** (e.g. 3-day shipping).

The outcomes are **structured** such that a buyer's value for this outcome tells you his value for all outcomes.

Properties:

- Collapsible allocation rule: degree of happiness
- Reduced IC constraints: specified by structure
- Single-dimensional perks: payment identity, etc
The Methods

Revenue Curves:

- Exactly where complexity grows or "splits"
- Limits of splitting
- Approximation via polygons

Complementary Slackness conditions:

- Where are certain outcomes preferred?
- Where must the allocation be positive?
- Where must the allocation be distinct, forcing different menu options?
- What are the limits to this?

Optimal Menu Complexity Spectrum

Lower Bounds for $(1 - \varepsilon)$ -approximations

Multi-Dimensional Menu Complexity for *n* Items

Key Open Problems

- Other settings with more complex IC links?
- Lower bounds in terms of ε ?
- Constant-factor approximations?
- Multiple bidders?
- Filling out the questions asked in Yannai's talk in this setting.

Thank you!